科研团队
首页  >  科学研究  >  科研团队  >  正文

能源化工催化与工艺实验室

团队负责人:陆小军

团队成员:张睿、汪孟恒

团队简介:

本团队现有教授1人,讲师2人,现有在读博士研究生、硕士研究生共11人。团队负责人入选湖北省“百人计划”创新人才。团队共计承担国家级和省级基金项目5项,企业横向技术研发及中试项目7项;发表论文40多篇,专利近10项,合编专著1本(RSC出版)。团队具有丰富的技术转化及工程化的经验,曾主持或重点参与国内外多项技术中试和示范项目。


研究领域:

团队致力于生物质、CO2等分散含碳资源高效转化利用和传统能源与可再生能源融合发展技术的开发,包括合成气(CO/H2)和CO2转化制清洁油品、烯烃、及高碳醇,生物质气化制氢,CO2的电催化、光热催化转化制化学品,太阳能电池、电极材料合成等研究方向。研究兴趣集中在上述领域的反应过程中催化剂和反应器的研发,新材料的合成,以及新型工艺流程的开发。


承担项目情况:

团队承担了南非国家科研基金1项;目前在研国家级、省级基金4项,包括科技部政府间国际科技创新合作重点专项1项,国家自然科学基金青年项目1项,湖北省科技人才服务企业项目1项,中国博士后科学基金面上项目1项。团队具有丰富的技术转化及工程化的经验,曾主持南非大学城市垃圾制油小型示范项目,负责美国休斯顿3000桶/天天然气制合成油项目技术部分,负责武汉凯迪集团生物质为原料的油醇联产技术开发,重点参与陕西金巢煤制油中试项目;目前在研横向技术研发项目3项,包括城市生活垃圾制氢示范项目、丁二酸二甲酯非均相化催化剂研发项目。


主要研究成果:

部分论文:

[1] Tang, Y.; Liu, Y.; Chen, J.; He, C.; Lu, X.; Zhang, R.; Liu, X. Review of CO2 selectivity and its control in the Fischer Tropsch Synthesis to value-added chemicals, Reaction Chemistry & Engineering, 2023, 8, 1229.

[2] He, C.; Lu, X.; Liu, Y.; Yan, Z.; Zhang, R.; Liu, X. Stability enhancement for silver catalyst in ethylene epoxidation by support treatment, Catalysis Communications, 2023, 178, 106669.

[3] Chang J.; Zhang, Y.; Lu, X.; Yao, Y.; Liu, X.; Hildebrandt, D. Insight into the Role of Co2C Supported on Reduced Graphene Oxide in Fischer-Tropsch Synthesis and Ethene Hydroformylation, Applied Catalysis A: General, 2021, 614, 118050.

[4] Zhang, Y.; Yao, Y.; Chang, J.; Lu, X.; Liu, X.; Hildebrandt, D. Fischer–Tropsch synthesis with ethene co-feeding: Experimental evidence of the CO-insertion mechanism at low temperature, AIChE Journal, 2020, 66, 17029.

[5] Lu, X.; Zhu, X.; Masuku, C.; Hildebrandt, D.; Glasser, D. A study of the Fischer-Tropsch Synthesis in a batch reactor: rate, phase of water, and catalyst oxidation, Energy Fuels, 2017, 31, 7405.

[6] Gorimbo, J.; Lu, X.; Liu, X.; Yao, Y.; Hildebrandt, D.; Glasser, D. Low pressure Fischer-Tropsch Synthesis: in-situ oxidative regeneration of iron catalysts, Industrial & Engineering Chemistry Research, 2017, 56, 4267.

[7] Lu, X.; Hildebrandt, D.; Glasser, D. Distribution between C2 and C3 in low temperature Fischer-Tropsch synthesis over a TiO2-supported cobalt catalyst, Applied Catalysis A: General, 2015, 506, 67.

[8] Masuku, C.; Lu, X.; Hildebrandt, D.; Glasser, D. Reactive distillation in conventional Fischer-Tropsch reactors, Fuel Processing Technology, 2015, 130, 54.

[9] Zhu, X.; Lu, X.; Liu, X.; Hildebrandt, D.; Glasser, D. Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts, Chemical Engineering Journal, 2014, 247, 75.

[10] Lu, X.; Hildebrandt, D.; Liu, X.; Glasser, D. A thermodynamic approach to olefin product distribution in Fischer-Tropsch Synthesis, Industrial & Engineering Chemistry Research, 2012, 51, 16544.

[11] Lu, X.; Zhu, X.; Hildebrandt, D.; Liu, X.; Glasser, D. A new way to look at FTS using flushing experiments, Industrial & Engineering Chemistry Research, 2011, 50, 4359.

[12] Lu, X.; Hildebrandt, D.; Liu, X.; Glasser, D. Making sense of the Fischer-Tropsch Synthesis reaction: start-up. Industrial & Engineering Chemistry Research, 2010, 49, 9753.

[13] Li, Y.; Zeng, L.; Pang, G.; Wei, X.; Wang, M.; Cheng, K.; Kang, J.; Serra, J.; Zhang, Q.; Wang, Y. Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature, Applied Catalysis B: Environmental. 2023, 324, 122299.

[14] Li, Y.; Wang, M.; Liu, S.; Wu, F.; Zhang, Q.; Zhang, S.; Cheng, K.; Wang, Y. Distance for communication between metal and acid sites for syngas conversion, ACS Catalysis, 2022, 12, 8793.

[15] Wang, M.; Wang, Z.; Liu, S.; Gao, R.; Cheng, K.; Zhang, L.; Zhang, G.; Min, X.; Kang, J.; Zhang, Q.; Wang, Y. Synthesis of hierarchical SAPO-34 to improve the catalytic performances of bifunctional catalysts for syngas-to-olefins reaction, Journal of Catalysis, 2021, 394, 181.

[16] Wang, M.; Han, Y.; Liu, S.; Liu, Z.; An, D.; Cheng, K.; Zhang, Q.; Wang, Y. Pore-mouth catalysis boosting the formation of iso-paraffins from syngas over bifunctional catalysts, Chinese Journal of Catalysis, 2021, 42, 2197.

[17] Wang, M.; Kang, J.; Xiong, X.; Zhang, F.; Cheng, Kang.; Zhang, Q.; Wang, Y. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion, Catalysis Today, 2021, 371, 92.

[18] Liu, X.; Wang, M.; Yin, H.; Hu, J.; Cheng, Kang.; Kang, J.; Zhang, Q.; Wang, Y. Tandem Catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34, ACS Catalysis, 2020, 10, 8303.

[19] Xiao, J.; Cheng, K.; Xie, X.; Wang, M.; Xing, S.; Liu, Y.; Hartman, T.; Fu, D.; Bossers, K.; Marijn A. van Huis; Blaaderen, A.; Wang, Y.; Weckhuysen, B. Tandem catalysis with double-shelled hollow spheres, Nature Materials, 2022, 21, 572.

[20] Liu, X.; Wang, M.; Zhou, C.; Zhou, W.; Cheng, Kang.; Kang, J.; Zhang, Q.; Deng, W.; Wang, Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34, Chemical Communications, 2018, 54, 140.

[21] Zhang, D.; Xu, F.; Lu, Q.; Zhang, R.; Xia, J. Poly(3-amino-carbazole) derivatives containing 1,10-phenanthroline and 8-hydroxyquinoline ligands: synthesis, properties and application as ion sensors, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 295, 122608.

[22] Zhang, D.; Xu, F.; Lu, Q.; Zhang, R.; Xia, J. Dual-functional fluorescent chemosensor with large stokes shift based on 2D Poly(3-amino-carbazole) for efficient p-Nitroaniline and Fe3+ Detection, European Polymer Journal, 2023, 194,112110.

[23] Zhang, R.; Xu, J.; Qian, J.; Xia, J. Facile synthesis of poly(3,4-ethylenedioxythiophene) and poly(bis-3,4-ethylenedioxythiophene) via UV-Irradiation polymerization and their reduction/iodine oxidation post-treatment for the application as counter electrodes for dye-sensitized solar cells, Electrochimica Acta, 2019, 313, 505.

[24] Zhang, R.; Ling, H.; Lu, X.; Xia, J. The facile modification of PEDOT: PSS buffer layer by polyethyleneglycol and their effects on inverted perovskite solar cell, Solar Energy, 2019, 186, 398.

[25] Zhang, R.; Zhang, L.; Xia, J.; Lu, X. Controllable Synthesis of Sc3N@C78 Microspindles with excellent electrophotonic properties, ACS Applied Energy Materials, 2019, 2, 1489.

[26] Zhang, R.; Li, Z.; Xu, J.; Xia, J. Synthesis and application of poly(bis-3,4-ethylenedioxythiophene methine)s as novel counter electrodes in dye-sensitized solar cells, Solar Energy, 2018, 173, 1189.

[27] Ling, H.; Zhang, R.; Ye, X.; Wen, Z.; Xia, J.; Lu, X. In-situ synthesis of organic-inorganic hybrid thin film of PEDOT/V2O5 as Hole Transport Layer for Polymer Solar Cells, Solar Energy, 2019, 190, 63.

[28] Ye, X.; Ling, H.; Zhang, R.; Wen, Z.; Hu, S.; Akasaka, T.; Xia, J.; Lu, X. Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells, Journal of Power Sources, 2020, 448, 227419.

[29] Chen, L.; Xu, J.; Zhang, R.; Xia, J. FTO-free and low-Pt-loading counter electrodes for dye-sensitized solar cells based on chemical bath deposited microstructured nickel layer, Electrochimica Acta, 2021, 369, 137641.

[30] Ye, X.; Wen, Z.; Zhang, R.; Ling, H.; Xia, J.; Lu, X. High-performance and stable inverted perovskite solar cells using low-temperature solution-processed CuNbOx hole transport layer, Journal of Power Sources, 2021, 483, 229194.

部分专利:

1. Glasser, D.; Lu, X.; Hildebrandt, D.,A Fixed Bed Reactor,美国专利 US10751683B2

2. 陆小军,刘一文,张睿,和铖阳, 热管列管式固定床反应器,CN 115212810 A

3. 陆小军,和铖阳,张睿,刘一文,具氢分离机制的热管列管式固定床丙烷脱氢反应器,CN 115228388 A

4. 陆小军,和铖阳,刘一文,陈泇冰,刘亦欣,一种反应气体诱导提高乙烯环氧化反应体系催化剂活性的方法,专利申请号 2023103587628

5. 陆小军,刘一文,尹坤东,张鑫雨,和铖阳,陈泇冰,一种用于一步法制备低碳烯烃的碳化钴复合催化剂及其制备方法,专利申请号2023104270831




Baidu
sogou